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In this paper, a multiscale approach spanning atomistic and mesoscopic regimes to model the rheology of
suspensions that have strongly interacting particles in highly viscous solvents is presented. The model suspen-
sions studied here have 65% sucrose solution—a Newtonian fluid with a viscosity of 170 cP at room
temperature—as the solvent phase with ceramic particles of sizes on the order of a few �ms as the dispersed
�solute� phase. A multiscale approach is proposed to quantitatively account for the effect of the properties of
constituent materials on the bulk rheology of the suspension apart from the effect of hydrodynamic factors. A
dissipative particle dynamics-type particle-based approach is adopted to which material-specific, mesoscopic
force fields developed using molecular dynamics are fed. Issues pertaining to the handling of the vast spectrum
of time and length scales present and an appropriate Gallilean-invariant thermostat for solvent dynamics are
addressed and resolved. Numerical calculations compare reasonably well to experimentally measured viscosi-
ties up to reasonably high Peclet numbers ��104�.
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I. INTRODUCTION

Suspensions with highly viscous solvents and strongly in-
teracting solid particles are ubiquitous in industrial applica-
tions. In such suspensions, the solvent phase becomes an
efficient carrier of momentum and consequently hydrody-
namic interactions become significant in determining the
bulk viscosity. Also, electrostatic interactions between the
solid particles and between the solid particles and the solvent
phase become equally significant leading to a strong material
specificity in the rheology. To capture the effect of all these
disparate interactions that span several decades of length and
time scales �1�, a multiscale approach is used.

At the mesoscopic scale, a dissipative particle dynamics
�DPD�-type particle-based computational framework �2–4� is
used. In this approach, the whole system �solvent and solute
particles� is discretized into mesoscopic-sized particles; ef-
fective mesoscopic interactions between the particles then
govern the dynamics of the system and hence its rheology
�1�. Most contemporary numerical works in this area con-
sider the qualitative effect of parameters such as solid load-
ing of the suspension, particle shape, particle size, shear rate,
etc. on the macroscopic rheology of suspensions �2,4�. More
quantitative numerical formulations that also account for the
effect of constituent material properties on bulk rheology do
not exist to our knowledge. However, it is well known that
the effect of material properties on shear viscosity of ceramic
suspensions is strong in systems with strongly interacting
solid particles, such as the system studied here. In order to
have some predictive capability regarding real suspensions,
therefore, one needs to account for the material properties in
conjunction with the hydrodynamic effects. Material proper-
ties manifest themselves as nonhydrodynamic �electrostatic
and dispersion� interactions between the particles of the
modeled system. An understanding of the effect of these in-
teractions on the bulk viscosity of the suspension entails cap-
turing the material-specific nature of these interactions. By

doing so, one can potentially tailor the viscosity predictably
by changing the material constituents. With this being one of
the main motivations of this work, Derjaguin-Landau-
Verwey-Overbeek �DLVO� theory �5� along with atomistic
level molecular-dynamics �MD� calculations were employed
to calculate the parameters of the solid-solid interactions.
The effective interactions thus calculated are used in the me-
soscopic DPD framework.

In suspensions, such as the suspension of �m-sized ce-
ramic particles in a 65% sucrose solution studied here, elec-
trostatic interaction between the solid particles and the sol-
vent phase can have a strong effect on rheology. These
interactions are nontrivial and like solid-solid interactions,
they bring material sensitivity to the rheology of the suspen-
sion. Therefore, they need to be characterized and their effect
on rheology needs to be parameterized similarly. In the DPD
framework, this interaction manifests as the effective inter-
action between the DPD fluid �or solvent� particle and the
larger solid particle. Unlike solid-solid interaction, however,
a DLVO-type generic framework does not exist for this in-
teraction partly due to the fact that the interaction-pair mem-
bers belong to two different phases. In this work, we intro-
duce a Lennard-Jones �LJ� type interaction between these
particles and bring material specificity to it by interpreting
the LJ parameters in a mesoscopic sense and calculating the
interaction parameters using the basic material properties.

The importance of hydrodynamic effects on the shear rhe-
ology of these types of suspensions cannot be overstated
�2,3,6�. From the point of view of overall rheology of the
suspension, the solvent plays the role of carrying the mo-
mentum imparted to it by the motion of the solid particles. At
higher viscosities, the hydrodynamic effects and viscous dis-
sipation become more prominent and need to be resolved
accurately by the numerical scheme. In this work, the Lowe-
Andersen thermostat �7� is implemented to resolve the dy-
namics of the solvent phase within the framework of suspen-
sion rheology. From our experience, the original DPD
thermostat �2� is inadequate in sufficiently resolving the
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momentum-carrying capacity of highly viscous solvents �4�.
This is also noted in other works on DPD �3,7,8�.

To test the validity and limitations of our approach, we
also performed a series of focused experiments using a
parallel-plate viscometer to measure the viscosity of suspen-
sions of alumina, clay, and talc particles in a sucrose solution
at different shear rates. These measurements are used as a
comparison for the numerical scheme presented here.

As can be seen, modeling the rheology of these suspen-
sions in a predictable manner involves the consideration of a
number of disparate subjects. In this paper, we describe each
of these subtopics to the necessary level of detail, along with
appropriate references, in order to focus on the main goal of
developing a multiscale strategy for real-life applications.
We start with a brief description of the materials and the
experiments. Then, handling of hydrodynamic and nonhy-
drodynamic interactions is discussed. This is followed by a
brief discussion of some numerical aspects of the multiscale
strategy. Finally, comparison between the experiments and
numerical results are presented with analysis.

II. MATERIALS AND EXPERIMENTS

This section describes the experimental procedure which
was used to obtain the data computed from the numerical
model.

A. Material preparation

A 65% �by weight� sucrose solution in water was used as
the solvent for the suspensions. The reasons for doing so
were multifold: �1� this solution is Newtonian and has a high
viscosity of around 175 cP. Thus, it comes close to represent-
ing the highly viscous nature of typical solvents used in the
extrusion of ceramic pastes. At the same time, its Newtonian
nature makes the suspension much simpler to study. �2� Su-
crose is a well-studied material and therefore the calculation
of interparticle interactions for numerical modeling is
straightforward. �3� Sucrose is widely �and cheaply� avail-
able. The sucrose used was S6-500 from Fisher Scientific.
Making 65% �by weight� sucrose solution in water was
straightforward as sucrose dissolves readily in water. The
solution preparation process consisted of measuring appro-
priate amounts of sucrose and water at room temperature and
mixing them. The solution was then vibrated for a minute
using a vibrator �“Maxi Mix Plus” from Thermolyne� and
then kept for a few hours in a slow roller �from US Stone-
ware, table-top model� to ensure complete dissolution. The
roller speed was maintained at 30 rpm. The resulting solution
was transparent with a density of 1.3 g/cc and a Newtonian
viscosity of around 175 cP.

Three suspensions were made out of finely cut clay, alu-
mina, and talc particles whose particle sizes were controlled
to make the suspension size distributions as close to mono-
disperse as possible. Because of the high viscosity of the
solvent and strong interactions between the solvents and the
ceramic powders, suspensions were made using a three-roll
mill using three to four passes. The solid powders were
added to 10 mL of the solvent in 3 g increments until the

desired concentration of 30% �by volume� was attained. In
practice, the maximum concentration was determined by the
ability to blend the suspensions properly using the three-roll
mill. The actual solid loading value was obtained from the
weight differential between the native suspension and solid
part of the suspension after the solvent had been evaporated.
In Table I, the suspension and particle properties are listed
that are used in the numerical calculations.

B. Viscosity measurement

A parallel-plate viscometer �MCR-300 from Anton-Paar
Physica� with 50 mm diameter plates and a gap between the
plates of 1 mm was used for measuring viscosity. The shear
rate was varied from 1 to 1000 s−1. The reading of the nor-
mal force between the plates was monitored to ensure the
integrity of the measurements. A drawback of parallel-plate
viscometer is the centrifugal spilling of the material at high
shear rates because of the absence of radial confinement. In
view of this, only data for shear rates below 100 s−1 were
considered reliable, although higher shear rate data did not
significantly deviate from the general trend. The measure-
ments were done for both fresh and aged �few days old�
suspensions; aging did not have any effect as shown in Fig. 1
for alumina and clay suspensions.

III. RESOLVING THE HYDRODYNAMICS
OF THE SOLVENT PHASE

A. Thermostat

In sheared suspensions that have a viscous liquid as the
solvent, hydrodynamic effects become critical for the bulk
rheology �1–4,6�. Because of its viscous nature, the solvent

TABLE I. Particle and suspension properties.

Solid
Average particle diameter

��m�
Particle density

�g/cc�
Loading
�% vol�

Clay 2 2 25%

Alumina 1.2 3.5 18%

Talc 2.5 2.5 25%

0 20 40 60 80 100
Shear Rate [1/s]

0

1000

2000

R
ed

uc
ed

V
is

co
si

ty

Clay (fresh)
Clay (aged)
Alumina (fresh)
Alumina (aged)

FIG. 1. �Color online� Measured viscosities of fresh and aged
sucrose suspensions.
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phase acts as an efficient carrier of momentum. Assuming a
Newtonian solvent �which is the case in this paper�, one of
the main objectives of the mesoscopic model is to capture
this momentum-carrying capacity as much as necessary �1�.
This is because the objective of the exercise is to calculate
the rheology of the suspension and not the solvent. There-
fore, accurately resolving the viscosity of the solvent is a
needless and, as will be seen later, a hopeless task.

The momentum-carrying capacity of a viscous liquid is
best captured by the Schmidt number �Sc�, which is the ratio
of kinematic viscosity to self-diffusivity, � /D. In essence, Sc
quantifies the relationship between the diffusivities of mo-
mentum and mass. Liquids are efficient carriers of momen-
tum and hence their Sc values are much greater than 1. The
numerical scheme used to resolve the solvent should there-
fore mimic “liquidlike” Sc numbers, which is of the order of
10 and higher.

One of the drawbacks of the original DPD thermostat
with the dissipative and random forces coupled via the
fluctuation-dissipation theorem is that it can mimic only low
Schmidt numbers ��1� �9�. Limited success in enhancing Sc
can be achieved but at the tremendous cost of extra compu-
tations �10�. While this limitation poses no apparent prob-
lems for nondilute suspensions with waterlike solvents �2–4�,
for the system at hand with sucrose solution—almost 200
times more viscous than water—our experience shows that
the original DPD thermostat could not resolve the high levels
of viscous dissipation.

In view of this, we implemented the Lowe-Andersen �LA�
thermostat �7� which can yield Sc numbers orders of magni-
tude higher than the original DPD implementation. In this
thermostat, the coupled dissipative and random forces do not
appear explicitly as in the original DPD. Instead, the relative
velocity between interaction pairs is frequently and randomly
reset using a Maxwell-velocity distribution. The strategy be-
hind enhancing Sc number is to generate additional viscosity
�or stresses� from these interactions with the thermostat in a
Gallilean-invariant manner. The quantity of these additional
stresses can be controlled by thermostat parameters such as
the interaction probability, time-step value, etc. �7,8� and
thereby Sc of the modeled solvent can be controlled. It
should be noted that Gallilean invariance is necessary to con-
serve hydrodynamics and to render Navier-Stokes represen-
tation at macroscopic scales. The LA thermostat does a much
better job at this and provides affordable scalability, i.e.,
computational parameters can be tuned to increase the value
of Sc without incurring substantial additional costs �7,8�.
Stochastic rotation dynamics �SRD� is another mesoscopic
technique in this category that uses a different type of
Gallilean-invariant thermostat �1,11�.

Finally, a small note is in order before concluding this
section. While Schmidt number is an intrinsic fluid property,
in this work, we are dealing with mesoscopic scales and so
the fluid is described by particles that are much larger than
the molecular scale. Therefore, one could easily see that the
intrinsic Sc from the molecular description of a fluid may not
be exactly the same as Sc from a mesoscopic fluid. Hence, as
mentioned above, it is not our goal to “exactly” mimic the
solvent Sc in the mesoscopic description �8�. As long as the
numerical model can efficiently incorporate the momentum-

carrying role of the solvent and resolve the viscous dissipa-
tion, the hydrodynamic contribution of the solvent can be
accurately accounted for. This fact is important because
mimicking high Sc involves high computational costs.

B. Time and length scales analysis

As is well known, a broad spectrum of length and time
scales exists in these problems spanning over 10 orders of
magnitude. Resolving all of these is impossible �1�. Fortu-
nately, not all of them are important to the bulk rheology of
the suspension and hence the spectrum can be “telescoped”
to a few scales of relevance �1�. This essentially means map-
ping the real system into the modeled coarse-grained �CG�
system and retaining only the amount of information neces-
sary to meet the objective of describing the rheology of the
suspension.

In the systems we are studying that are composed of
�m-sized solid particles dispersed in a viscous solvent with
imposed shearing, the Peclet number �Pe� is generally much
greater than 1 �as mentioned in Sec. VI� and the hydrody-
namic effects are dominant over Brownian and colloidal ef-
fects. In this rheophysical domain, Pe becomes the most im-
portant parameter �12�. The two time scales of importance,
therefore, are the diffusive and Stokes time scales. The dif-
fusive time scale ��D� is the measure of time it takes a colloid
particle to diffuse over a distance of its radius. If “a” is the
radius of the colloid then �D=a2 /Dcoll, where the Dcoll is the
diffusivity of the colloid particle in the viscous solvent. Fol-
lowing Einstein’s rule, Dcoll�kBT / �6��a�, where kB is Bolt-
zmann’s constant, T is the temperature, and � is the solvent
viscosity.

The Stokes time scale �ts� is the amount of time it takes
the colloid particle to advect over a distance equal to its
radius and therefore ts=a /v, v being the typical convective
velocity in the system. The ratio of �D to ts is the Peclet
number and hence it is also the measure of the separation of
the relevant time scales, �D and ts. Considering the impor-
tance of these two time scales, this separation should be
maintained in the modeled, coarse-grained system. There-
fore, the physical Peclet number is equated to the Peclet
number of the coarse-grained system to ascertain the relevant
coarse-grained properties. This is demonstrated by an ex-
ample below.

Using the expressions of �D and ts, the Peclet number
takes the expression Pe=6��a3� /kBT, where � is the im-
posed shear rate. For a typical case of �=10 s−1 and a
=1 �m in our sucrose suspension �viscosity of 175 cP� at
T=300 K, the physical Peclet number, Per, is 8242. In the
coarse-grained system, if the nondimensional scales are so
chosen that the nondimensionalized colloid radius is 2 and
nondimensionalized kBT is 1, then the Peclet number of the
coarse-grained system takes the form Pe=A0�m�m, where �m
and �m are the solvent viscosity and shear rate of the mod-
eled system, respectively, and A0 incorporates other terms in
the Peclet number expression �6�a3 /kBT�. Equating this with
Per yields the relationship between the two quantities as

�m�m =
Per

A0
. �1�

Thus, as long as �m and �m satisfy the above relationship,
separation of scales between �D and ts is maintained by the
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coarse-grained system and the relevant physics in this rheo-
physical domain would be captured. But, in practice, not all
values of these parameters yield computationally amenable
systems and some reasonable bounds must be imposed. For
instance, too high a value of �m for a chosen system can lead
to numerical problems. Also, the choice of these parameters
should reasonably maintain the separation of other relevant
time scales. The kinematic time scale ��=a2 /� is the mea-
sure of diffusivity of momentum in the solvent phase. Vis-
cous liquids are adept at diffusing momentum much more
efficiently than dispersed particles and therefore �D /���1 in
a suspension of highly viscous liquid. This disparity should
be maintained, if not exactly reproduced, by the choice of the
coarse-grained parameters such as �m and �m �1�.

IV. RESOLVING THE NONHYDRODYNAMIC
INTERACTIONS

A. Atomistic calculations of solid-solid interactions in sucrose

Although the coarse-grained nature of the mesoscale
model places a limit on the accuracy of the interaction po-
tentials, several techniques have been developed �matching
forces from atomistic simulations �13�, matching experimen-
tal potentials �14� or correlation functions �15�, and inverting
pair-correlation functions �16�� to apply chemical �material�
specificity to mesoscale models. A major drawback in devel-
oping coarse-grained potentials is the fact that, unlike atom-
istic potentials, they are sensitive to changes in the system
parameters. Simulating a different phase, solvent, or even
temperature can require refitting the coarse-grained poten-
tials. However, defining a general approach for one system
goes a long way towards reducing the time required to de-
velop potentials for similar systems. In this case, our goal is
to develop interaction potentials for colloid suspensions in
viscous solvents. Specifically, to demonstrate the procedure,
we focus on alumina particles in concentrated sucrose solu-
tions in this section and suggest that potentials for other sys-
tems �clay and talc� can be developed using this approach.

Applying the principles of the DPD technique to suspen-
sions in sucrose solutions requires addressing the impact of
sucrose on multiple length scales. Not only does it increase
the viscosity of the bulk solvent, but it also reduces the elec-
trostatic screening and disrupts the ordering of water mol-
ecules near the surfaces of the colloidal particles. The ap-
proach used must define the interaction between alumina
particles while addressing all of these influences. To accom-
plish this, we use DLVO theory �5� to the extent that it is
applicable to describe the long-range interaction between
two flat surfaces and use atomistic simulations to determine
the short-range interactions between the surfaces. We then
apply the Derjaguin approximation to relate the total interac-
tion between two flat surfaces to the interaction between
spheres of the same composition.

DLVO theory accounts for both the van der Waals and
double layer interactions between charged surfaces interact-
ing over nanometer to micrometer length scales. The force
per unit area due to the double layer term of DLVO theory is
shown in Eq. �2� �5�

F/A = kBT����exp�− e	m/kBT� − 1� + �exp�e	m/kBT� − 1�� ,

�2�

where kB is Boltzmann’s constant, T is the temperature, �� is
the bulk ionic strength of the solvent, e is the electronic
charge, and 
m is the electrostatic potential at the midplane
between the two surfaces. The midplane potential can be
written as the sum of the potentials of the two surfaces at the
midplane D /2, where D is the separation distance between
the surfaces

	m = �8kBT�1/e�exp�− �D/2� . �3�

Here, � is the inverse Debye screening length �using the
dielectric constant of a 65% sucrose solution, �=59.59 �17��
and �1 is given by

�1 = tanh�ze	0/4kBT� , �4�

where z is the valency of the electrolyte ions and 	0 is the
electrostatic potential on the surface of the alumina particles
accounting for the bare surface charge as well as the charge
due to the bound ions in the Stern layer. We use a value of
264 mV for the electrostatic potential based on a zeta poten-
tial of 97 mV. Using the Derjaguin approximation, the force
per unit area from the van der Waals term is given in Eq. �5�,

F/A = − AH/6�D3, �5�

where AH is the Hamaker constant and D is the separation
distance between the surfaces. The Hamaker constant ac-
counts for the chemical �material� specificity of each surface
as well as the properties of the medium between the surfaces.
Calculation of the Hamaker constant between different par-
ticles is explained in the next section on solid-fluid interac-
tion.

Below a few nanometers, DLVO theory breaks down as
the molecular structure of the solvent becomes relevant or as
the counter-ion clouds around the particles begin to signifi-
cantly influence each other. Here, we use targeted molecular
dynamics of two alumina surfaces being pushed together to
get the solvation potential. In this model, we use the 41213-
ICSD structure of bulk alumina taken from the crystal struc-
ture database and form the surfaces by cleaving the bulk
structure. We then add hydrogen atoms to the exposed oxy-
gen sites at a surface coverage of 1.7 sites /nm2 correspond-
ing to the measurements of Nordin et al. �18�. A 65 wt %
sucrose solution is generated from 743 molecules of sucrose
in water and equilibrated using the consistent valence force
field �cvff�. The two alumina surfaces measuring 58
67

12 Å are put in a simulation box initially separated by 15
Å and solvated with the sucrose solution. The system dimen-
sions are 88
97
69 Å to provide 30 Å of water between
periodic images of the particles. The total number of atoms
in the simulation is 38 852. The targeted MD approach in-
volves gradually pushing the two surfaces together while
measuring the force experienced by the surfaces. The inter-
actions between the individual atoms are described by the
ClayFF force field �19� and parameters for the sucrose mol-
ecules are taken from the cvff force field �20,21�. The simu-
lations are performed in the NVE ensemble using a time step
of 0.4 fs with temperature rescaling applied every ten steps
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to maintain the temperature at 300 K. The surfaces are incre-
mentally pushed together by a distance of 0.5 Å over a time
of 40 ps followed by 360 ps of data collection to determine
the average force on the surfaces at each stage. Using this
approach, the short-range interactions due to solvation
forces, which are not taken into account by DLVO theory,
can be accurately calculated and added to the DLVO forces.
At the end of the simulation, the solvation potential is calcu-
lated by integrating the force on each surface at each sepa-
ration distance relative to the system at infinite separation.

Esolv�D� = − �
�

D

F�r�dr . �6�

Whereas solvation potentials often show an oscillatory
profile when the solvent is pure water, the presence of su-
crose disrupts the water structure near the particle surfaces
and we get a solvation potential that shows a smooth expo-
nential decay. Similarly, the two components of the DLVO
potential can be fit to exponential functions that are practical
for incorporating into coarse-grained simulations. This gives
us a set of CG force field parameters that account for the
surface chemistry and charge density of alumina surfaces in
sucrose solutions.

After calculating the solvation and DLVO forces between
the solid surfaces, the net solid-solid interaction potential per
unit area at a distance D between the surfaces can be gener-
alized as shown in Eq. �7� for use in the DPD simulations.
Although the components of the potential are determined
numerically, we find that this expression gives a near-perfect
fit to the numerical results

Esurf�D�/A = 	A1 exp�− B1D� + A2 exp�− B2D�

+ C2 −
AH

12�D2
 . �7�

Here, the terms with subscript 1 pertain to the ultraclose
range solvation potential obtained by fitting the numerical
results of MD simulations. The terms with subscript 2 pertain
to the electrostatic component of the DLVO potential and are
obtained by numerically integrating Eq. �2�. The last term is
the attractive van der Waals component of the DLVO poten-
tial which can be obtained by analytically integrating Eq. �5�.
These terms bring material specificity to the rheology of the
suspension in an analytical form that is efficient to calculate
and easy to incorporate into the DPD simulations. The values
of these parameters for different solid materials are listed in
Sec. VI on numerical simulations. The interaction energy per
unit area obtained by combining the solvation and DLVO
components for two alumina surfaces in a sucrose suspen-
sion is shown in Fig. 2. With this expression, the force be-
tween two alumina spheres can be written as Fsphere�D�
=�REsurf�D� /A using the Derjaguin approximation where
the factor of �R accounts for the curvature of the spherical
particle surfaces. Specifically, R is the geometric mean of the
radii of the two particles.

B. Solid-fluid particle interactions

Although the interaction between two colloidal particles
is well described by theory and can be measured experimen-
tally, the interaction between a colloid and a mesoscopic
fluid particle is poorly defined. The reason for this is the fluid
particle is intended to represent many fluid molecules that,
unlike the atoms comprising the colloidal particle, are not
bound together. In this work, a LJ potential is used to de-
scribe the interaction between the fluid and solid particles.
The motivation behind its use comes from its proven versa-
tility and its widespread use in many applications including
mesoscopic systems as in Refs. �22,23�. This potential is
defined as

Esl�r� = 4�sl�	�sl

r

6

− 	�sl

r

12� . �8�

Since this is an interaction between two mesoscopic par-
ticles, the LJ parameters �sl and �sl in this context need a
mesoscopic interpretation and they should pertain to the size
and the materials of the interacting particles. Since the solid
particles are larger than the fluid particles, �sl is the measure
of the repulsive core of the solid particle and therefore is
taken to be of the order of the radius of the solid particle
�typically 1.1 to 1.2 times the radius�. Larger values of �sl
lead to less affinity between the solid particle and the sol-
vent. For a mesoscopic interpretation of the well depth, �sl,
the following approach is used.

As shown by Everaers and Ejtehadi �24�, for two homo-
geneous particles, integrating the atomistic LJ potential over
the volumes of the particles allows one to relate the mesos-
copic Hamaker constant �AH� to the atomistic LJ parameters,
AH=4�2�LJ���3�2. Generalizing to the case of heterogeneous
particles where the first particle is composed of type-i com-
ponents and the second particle is composed of type-j com-
ponents, we can write the following expression for AH if we
assume that the density of each component is distributed
evenly throughout the particles:

AH = 4�2�1�2

i,j

xixj�ij�ij
6 , �9�

where xi is the mole fraction of atom type i in particle 1 and
xj is the mole fraction of atom type j in particle 2.
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FIG. 2. �Color online� Form of the interaction energy per unit
area between two alumina surfaces in a sucrose solution.
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After tabulating the mole fractions of each atom type in
our solvent and alumina particles, we obtain the Hamaker
constants for particles of alumina and 65% sucrose solution
shown in Table II. For the case of the solid-fluid interaction
between alumina and sucrose �fluid� particles, the Hamaker
constant is interpreted as �sl in the LJ interaction, Eq. �8�.
The Hamaker constants for clay and talc suspensions are
calculated using a similar procedure and are given in Sec. VI
where simulation results are presented.

We include here a potential accounting for the particle-
solvent interaction, yet above, we derive the effective
particle-particle interactions while including the solvation
forces due to an explicit solvent. We use this approach be-
cause the solvent particles in our DPD simulations are half
the size of the alumina particles. Although the solvent par-
ticles are soft particles, they are much larger than the inter-
action range of the solvation forces, which is less than 10
nm. When the alumina particles are close enough together in
the DPD simulation for solvation forces to become relevant,
there are no fluid particles between them. Here, the solvation
potential derived from atomistic simulation is used to de-
scribe the repulsive interaction between the alumina par-
ticles.

V. NUMERICAL CONSIDERATIONS

There are many numerical issues associated with simulat-
ing a system as complex as the one at hand. The presence of
a broad spectrum of length and time scales, the necessity to
resolve high Schmidt numbers, and the inherently expensive
nature of particle-based computational techniques are but a
few of the complexities associated with these systems. Be-
low is a brief account of some numerical details that were
found to be important.

A. Solvent thermostat

As mentioned previously, it was found necessary to use
the Lowe-Andersen thermostat since it can resolve high
Schmidt numbers. Using this thermostat, an interaction pair
is thermalized with a probability that is proportional to the
Schmidt number of the modeled solvent. Within a certain
bound, Sc increases as the probability increases, but the com-
putational expense is also higher due to the larger number of
velocity readjustment operations involved. For our systems,
it was found that no substantial benefit was achieved above a
probability of 0.3. This is due to the small value of the time
step �as discussed below� that ensures a large number of
interactions with the thermostat bath �7�.

B. Initiating shear in dense suspensions

Because of the presence of strong attractive components
in the solid-solid and solid-solvent interactions, the viscosi-
ties are very high at low shear rates where colloidal interac-
tions dominate and the suspension appears to be essentially
in a jammed state. �This is also observed experimentally.�
Accordingly, special attention needs to be paid to the simu-
lations at the initial stages to get the system into computa-
tionally amenable configurations where hydrodynamic ef-
fects start becoming important. Otherwise, it was seen that
the energies in the simulations tend to diverge very soon.

This was accomplished by beginning the simulations with
values of the LJ � parameter �Eq. �8�� 5 orders of magnitude
less than the actual value and increasing it linearly to the
actual value over the first 100 000 time steps. The total du-
ration of the simulations is long enough �of the order of
15–20 million time steps� to negate the effect of this artifice.
Besides, time averaging of stress and velocities is typically
done after the first 2 000 000 time steps thus eliminating any
possibility of any lingering effect of this operation. Physi-
cally, this numerical artifice implies that initially and for a
very short duration, the suspension is made less “sticky” so
that the particles get some maneuvering room to move out of
jammed �or near-jammed� configurations without requiring
additional measures to resolve the stress fluctuations that are
present in this regime �25,26�.

C. Reduced units

A standard nondimensionalization procedure �3,4� is used
in which the nondimensionalization parameters are the cutoff
radius rc for length, mass of the DPD fluid particle for mass,
and kBT for energy. Dimensionless values of hydrodynamic
parameters such as shear rate and solvent viscosity, however,
are calculated using the analysis presented in Sec. III B.

The value of nondimensional colloid radius �the ratio of
the radius of the solid particle to the cutoff radius� has im-
portant implications as it determines the hydrodynamic
length scales being resolved �or ignored�. The larger the
value of this radius, the smaller the length scales resolved,
but then one needs larger domain size, which results in more
computations. Following the detailed analysis presented in
Ref. �1�, in this work we used a value of 2 for nondimen-
sional colloid radius.

D. Simulation time step

Time scales associated with nonhydrodynamic interac-
tions �solid-solid and solid-solvent� are much smaller than
the ones associated with hydrodynamic phenomena �1�.
Therefore, the value of the simulation time step depends on
the steepness of the electrostatic interactions �solid-solid and
solid-liquid�. For the cases considered here, a simple analysis
of the solid-solid and solid-solvent interactions for some
typical parameters indicate that the solid-solid interactions
are the most demanding and hence the simulation time step
is based on effectively resolving them. In order to arrive at a
conservative estimate, the interaction force at a very small
surface separation �0.001 in dimensionless units� is used. To

TABLE II. Effective mesoscopic interaction parameters for the
alumina and sucrose particles.

Pair type
AH

�kBT�

Alumina-alumina 57.6

Alumina-sucrose 41.4
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estimate the simulation time step, we require that under the
interaction forces at this separation, the particle should not
move more than 0.1rc during one time step. Note that analy-
sis of this kind only gives a rough estimate of the order of
magnitude of the time step. The appropriate value depends
on the physical nature of the problem and often some trial
and error as well as intuition. For the suspensions considered
here, dimensionless time steps were in the range of
10−8–10−7.

E. Duration of the simulation

In these simulations, macroscopic quantities such as vis-
cosity are calculated using small time-step values chosen to
resolve the nonhydrodynamic interactions that are much
smaller than the time scales associated with hydrodynamic
phenomena. Hence, long simulations are needed to obtain
statistically homogeneous solutions. This is also the case be-
cause in time-discrete numerical simulations, small time
steps result in very slow changes in the value of the stresses,
which can be temptingly misconstrued as a converged solu-
tion. Our experience has shown that the number of time steps
needed to assure a converged stress value is in excess of 15
million. The signs of convergence are either an almost con-
stant value over 2–3 million time steps or oscillations around
an average value. In the latter case, the amplitude of the
fluctuations gives a minimum estimate of the error. Our
simulations were extended until the errors due to the oscilla-
tions in the averaged stress were less than 5%. In Fig. 3, we
show a typical averaged stress profile near the end of the
simulation of the alumina suspension. As can be seen, the
variation is roughly 3% of the averaged stress.

VI. NUMERICAL SIMULATIONS AND ANALYSIS

With the philosophy and formulation described above, nu-
merical simulations were carried out on suspensions of alu-
mina, clay, and talc particles with the intention of validating
the formulation by comparing to experimental data. For each
simulation, a domain size of 16
16
16 �in dimensionless
units� was used. Since these simulations involve computa-

tional particles of different sizes �solid particles being larger
than fluid particles�, a size-dependent neighbor search algo-
rithm was implemented �27�. In this algorithm, direct-find
and linked-list search algorithms were applied separately to
the particle pairs. A linked-list algorithm is much faster but
to make it work for disparate particle sizes involves quite
some work �27�. Direct find, on the other hand, is a simpler
method that can be applied to disparate particle sizes but is
computationally expensive. A hybrid scheme was imple-
mented that harnesses the advantages of each of these
schemes and provides a 4–5 times decrease in computational
time over just the direct-find method. All fluid-fluid pairs that
involve same-sized particles �which far outnumber fluid-
solid and solid-solid pairs� were probed using the faster
linked-list algorithm. The other pair types were probed using
the direct-find method. The Lees-Edwards boundary condi-
tion was used to numerically impose the shear rate �27�.

For solid particles, a spherical, monodisperse distribution
with particle size equal to the measured averaged particle
diameter is used for all the simulations. This is an approxi-
mation since despite our best efforts, some polydispersity in
particle size does exist. The viscosity of the suspension is
obtained by dividing the calculated stress by the imposed
shear rate. The stress has three main components: �1� all
valid interactions between the constituent particles �solid-
solid, solid-solvent, and solvent-solvent interactions�, �2� the
kinetic contribution term due to the motion of the particles
�mviv j, vi, and v j are the velocity components relative to the
reference frame�, and �3� the extra collisional term due to the
interaction of the particles with the LA thermostat �7�. All
these components are averaged over volume and time to ar-
rive at the stress �27�. The validation of the basic numerical
formulation and application to simpler problems has been
reported by Chatterjee in Refs. �4,10�.

TABLE III. Interaction parameters for the alumina suspension
as defined in Eq. �7�. These parameters are obtained by fitting ato-
mistic MD simulation results or numerical integration as detailed in
Sec. IV. To improve the accuracy of the fit, two values have been
fitted to parameters with subscript 2 depending on the separation
distance, D, between the particles.

Parameter Value Units

AH 57.6 kBT

A1 169.988 kBT /Å2

B1 0.446 1 /Å

D�100 Å

A2 0.001404 kBT /Å2

B2 0.048169 1 /Å

C2 1.58
10−5 kBT /Å2

D�100 Å

A2 0.00035 kBT /Å2

B2 0.025867 1 /Å

C2 0 kBT /Å2
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FIG. 3. An example of the temporal variation of stress with time
for the alumina suspension at a shear rate of 10 s−1. The average
amplitude of the oscillations gives a minimum estimate for the error
in the reported results.
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A. Alumina suspension

For the 18% alumina suspension whose properties are
listed in Table I, the calculated parameters for the solid-solid
interactions, Eqs. �7� and �8� are given in Table III. The
cutoff radius used for this system is 0.3 �m �half the colloid
radius�. The Lennard-Jones parameters for the solid-liquid
interaction are �sl=41.4 kBT and �sl=0.66 �m �1.1 times
the colloid radius�. The solvent viscosity is set to �m=10.
The Peclet number varies from 865 to 6920 as we vary the
shear rate from 5 to 40 s−1. As mentioned above, such high
values of Pe indicate that hydrodynamic effects dominate
over colloidal effects in the rheophysical domain considered.
We simulated 22 million time steps �reduced time of 2.2� to
attain convergent values for the viscosities as shown in Fig.
4. For this suspension, the total strain reached at the lowest
Pe simulated �865� was 1.26 �for a time-step value of 10−7

and total number of time steps of 22 million�. In Fig. 5, the
calculated reduced viscosities are compared to experimental
data. In Fig. 6, the same is plotted on a log-log scale for
clarity. The comparison is good at higher shear rates and it
deteriorates at lower shear rates where experimental values
rise far more steeply than the numerical results. An analysis
of this observation will be presented at the end of this sec-
tion.

B. Clay suspension

Properties of the clay particles and 25% clay suspensions
are given in Table I. The Peclet number varies from 1600 to
24 000 in the shear rate range of 2–30 s−1. The cutoff radius
used for this system is 0.5 �m. Here, the solvent viscosity is
set to �m=50 and the Lennard-Jones parameters for the
solid-liquid interaction are �sl=45.4 kBT and �sl=1.2 �m.
The parameters for the solid-solid interactions are listed in
Table IV. The total strain reached for the lowest Pe was 1.06
�time step=10−7 and total number of time steps of 50 mil-
lion�.

The calculated reduced viscosities are compared to the
experimental data in Fig. 7 and a log-log plot is shown in
Fig. 8. As in the alumina case, the values compare very well
at higher shear rates, while at lower shear rates, the experi-
ments show higher viscosity values. Both for clay and alu-
mina, a shear-thinning behavior is observed in both the nu-
merical simulations and the experiments, as expected.
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FIG. 4. �Color online� Numerically calculated viscosities of the
18% alumina suspension after simulations for indicated reduced
times �time step=10−7�.
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FIG. 5. �Color online� Comparison of viscosities from experi-
ment and numerical simulation of an 18% alumina suspension.
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FIG. 6. �Color online� Fig. 5 on a log-log scale.

TABLE IV. Interaction parameters for the clay suspension as
defined in Eq. �7�. These parameters are obtained by fitting atomis-
tic MD simulation results or numerical integration as detailed in
Sec. IV. To improve the accuracy of the fit, two values have been
fitted to parameters with subscript 2 depending on the separation
distance, D, between the particles.

Parameter Value Units

AH 69.3 kBT

A1 25.068 kBT /Å2

B1 0.1193 1 /Å

D�100 Å

A2 0.002773 kBT /Å2

B2 0.0259 1 /Å

C2 8.43
10−5 kBT /Å2

D�100 Å

A2 0.001697 kBT /Å2

B2 0.017 1 /Å

C2 0 kBT /Å2
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C. Talc suspension

Properties of the talc particles and 25% talc suspensions
are given in Table I. Among the three, talc particles are the
largest in size and hence the suspensions have a much higher
Peclet number that varies from 3940 to 59 100 in the shear
rate range of 2–30 s−1. The cutoff radius used for this sys-
tem is 0.625 �m. Here, the solvent viscosity is set to �m
=50 and the Lennard-Jones parameters for the solid-liquid
interaction are �sl=41.9 kBT and �sl=1.5 �m. The param-
eters for solid-solid interactions are listed in Table V. The
total strain reached for the lowest Pe was 1.3 �time step
=10−7 and total number of time steps of 50 million�.

The calculated reduced viscosities are compared to the
experimental data in Fig. 9. A log-log plot is shown in Fig.
10. The same trend seen for the clay and alumina cases
above is seen here. Experimentally measured talc suspension
viscosities are almost 3 times higher than those for clay �and
alumina� suspensions for comparable solid loading of 25%.
Of the three suspensions reported, this suspension shows the
greatest amount of discrepancy from the experiments, par-
ticularly at the lower shear rates ��10 s−1�.

D. Analysis

Simulations of the three suspensions show reasonable
agreement with experiments at higher shear rates but fail to
capture the steep rise in viscosity as the shear rate is reduced

below 10 s−1. The values, though, are of the same order of
magnitude as seen in Figs. 5, 7, and 9. From the log-log
plots, Figs. 6, 8, and 10, it can be seen that more or less for
all the three cases, the experiments show a dependence of
viscosity on shear rate as �����−1, whereas for the numeri-
cal calculation, the exponent has a value close to −1 /2, quite
consistently across the board. Of the three, calculations for
alumina suspension are closest to the experimental data and
talc suspension shows the most discrepancy. This is under-
standable considering the fact that alumina suspension has
the least solid loading �18%� and smallest particle size and
talc suspension has the largest particle size and highest solid
loading �25%�. As the particle sizes and loading fractions get
lowered, the particle shape becomes less important. One ob-
vious reason for the discrepancies seen in all of these cases is
the simplified spherical, monodisperse particles used in the
simulations. In reality, particles are polydisperse and aspheri-
cal. It is known that particle shape can affect suspension
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FIG. 7. �Color online� Comparison of viscosities from experi-
ment and numerical simulation of a 25% clay suspension.
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FIG. 8. �Color online� Log-log plot of Fig. 7.

TABLE V. Interaction parameters for the talc suspension as de-
fined in Eq. �7�. These parameters are obtained by fitting atomistic
MD simulation results or numerical integration as detailed in Sec.
IV. To improve the accuracy of the fit, two values have been fitted
to parameters with subscript 2 depending on the separation distance,
D, between the particles.

Parameter Value Units

AH 58.9 kBT

A1 37.08 kBT /Å2

B1 0.201 1 /Å

D�100 Å

A2 0.008182 kBT /Å2

B2 0.03255 1 /Å

C2 2.073
10−5 kBT /Å2

D�100 Å

A2 0.00239 kBT /Å2

B2 0.01588 1 /Å

C2 0 kBT /Å2

0 10 20 30
Shear Rate

0

1000

2000

3000

4000

5000

R
ed

uc
ed

V
is

co
si

ty

Numerical
Experiment

FIG. 9. �Color online� Comparison of viscosities from experi-
ments and numerical simulations of a 25% talc suspension.
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viscosity, more so at the lower ends of the hydrodynamic
regime �4�.

Another reason may be the inherent limitation associated
with measuring the viscosity of particulate suspensions using
a parallel-plate viscometer. As described in Ref. �28�, particle
migration away from the walls in a sheared suspension gives
rise to a segregated microstructure, so that regions near the
wall have a lower solid loading than regions away from the
walls. As a result, rheological measurements using this tech-
nique have local characteristics that need to be taken into
account and the net viscosity reported by the viscometer does
not exactly pertain to the uniformly dispersed systems the
numerical scheme deals with. In fact, the measurement of
viscosity of particulate suspensions still remains a challeng-
ing task �28�.

However, we think that the above reasons are secondary
and there are other, deeper, issues involved. As the shear rate
increases, the hydrodynamic effects start dominating the col-
loidal and Brownian interactions and take the system to
flow-amenable configurations thereby reducing the viscosity.
At low shear rates where the colloidal interactions are more
dominant, experiments suggest an almost abrupt rise in vis-
cosity which the numerical simulations fail to capture. This
behavior is very similar to the abrupt rheological behavior of
dense suspensions near the yielding regime seen experimen-
tally �25,26�. In this regime, these suspensions show an
“avalanche”-type behavior wherein the viscosity drops rap-
idly at the onset of yielding or, looked at in the reverse di-
rection, the viscosity rises rapidly as the system approaches
the jammed state and the formulation does not seem to be
able to capture this.

A more generic way of looking at yielding of granular
paste is the process of unjamming a jammed configuration
�29� and there is enough experimental evidence to suggest
that this process is accompanied by transient stress fluctua-
tions that are responsible for the steep viscosity behavior in
this regime �25,26,30–32�. Our suspensions, although not
highly dense from a solid loading point of view, nevertheless
behave like one because of the presence of strong attractive
potentials, particularly at low shear rates where colloidal in-
teractions are more effective �29,30�. Hence, at low shear
rates, in the vicinity of jamming-unjamming transitions,
stress fluctuations exist that are not captured by the mesos-
copic scheme used here, possibly because of the scaling as-
sumptions. These fluctuations have additional dissipations
associated with them that give rise to higher viscosities with

a steeper rise as evidenced in our experimental data. We
believe that the contributions of these fluctuations to viscous
dissipation constitute a big part of the gap between the nu-
merical results and experimental data at low shears.

In order to capture the behavior at low shear rates, a
mechanism needs to exist to incorporate the additional stress
fluctuations in the present mesoscopic numerical scheme.
Prior to that, however, one needs to understand the nature of
these fluctuations and try to represent them in a closed-form,
accessible manner. Our thesis in this regard is that these fluc-
tuations need not be incorporated accurately at their native
scales but rather their effect can be coarse grained as effec-
tive dissipative terms. This is akin to the manner in which the
effects of turbulent fluctuations are incorporated as an effec-
tive Reynolds stress term in Navier-Stokes equation in two-
equation models �33�. These issues, in our opinion, lie at the
core of understanding the behavior of complex suspensions
at low shear rates and are presently being investigated.

VII. CONCLUSIONS

In this paper, a successful attempt was made to predict the
rheology of real suspensions, quantitatively, using a multi-
scale methodology that incorporates the effect of material
properties on macroscopic viscosity. Aside from the well-
studied factors such as particle shape and size, solid loading,
etc., it is well known that material properties have a pro-
found effect on bulk rheology. In this work, we presented a
tested methodology to quantitatively account for this mate-
rial specificity. To do this, we used atomistic MD simulations
along with DLVO theory to calculate the solid-solid interac-
tion and we used an LJ-type interaction for the solid-solvent
interaction. The parameters of these interactions were calcu-
lated using the actual material properties thus bringing ma-
terial specificity to the scheme. The calculated viscosities
compare reasonably well to experimental measurements at
the higher end of the shear rate spectrum considered and
show discrepancy at lower shear rates, although the values
are of the same order of magnitude and show a similar trend.
Specifically, the computations are unable to reproduce the
steep rise in viscosity as the shear rate goes to zero. Some
explanations have been put forward to explain this. We pro-
pose that at low shear rates, the transition to jammed con-
figurations is accompanied by stress fluctuations that are not
accounted for in the mesoscopic, DPD-type technique used
here.

Finally, it should be noted that there are numerous vari-
ables involved in the characteristics and experimentation of
these suspensions most of which cannot be possibly incorpo-
rated in a modeling exercise and hence very close agreement
with experiments is almost impossible for these cases. How-
ever, by incorporating the essential features and by adopting
a first-principles-based multiscale strategy, reasonable agree-
ment was obtained and the trends were reproduced. Also,
very high Peclet numbers ��104� were resolved. Overall, the
strategy and analysis presented can be used as a stepping
stone to make mesoscopic techniques such as DPD a valu-
able tool for the prediction of rheology for practical applica-
tions.
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FIG. 10. �Color online� Log-log plot of Fig. 9.
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